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THE PROBLEM OF AVERAGING RANDOM STRUCTURES IN TERMS OF 
DISTRIBUTION FUNCTIONS* 

V.L. BERDICHEVSKII 

A new approach to solving averaging problems for micro-inh~~eneous 
continua, based on a restatement of the problem in terms of distribution 
functions, is described. Problems having a variational structure are 
considered. It is shown that, in terms of distribution functions, they 
reduce to the problem of minimizing a linear functional, having the 
meaning of the expectation value of the energy, in a set of distribution 
functions which is distinguished by an infinite number of linear 
constants. These constraints express certain matching conditions and 
contain multipoint distribution functions of the random characteristics 
of the medium. The constraints form an unlinked chain, the break of 
which at the n-th step contains only n-point distribution functions. 
In view of this, a sequence of approximate problems arises. 

1. Formulation of the problem. 
While there are several ways of studying composite materials t they all leave to one side 

the question of the distribution functions of the microfields, say the distribution functions 
of the stresses in the polycrystals. The microfields in essence remain unknown since, to 
know a random field means to know the family of its distribution functions. In view of this, 
it becomes necessary to state the problem of the behaviour of the material in such a way that 
it is a problem of finding the family of distribution functions which characterize thematerial 
by its microfields. As an example of a physical theory which is constructed in these terms, 
the theory of rarefied gases may be mentioned, in which, as in theory of composite materials, 
there are equations for the mean characteristics (the equations of gas dynamics), while to 
study the microfields we have to turn to the equation for the one-point distribution function 
(Boltsmann's equation). Though we can hardly count on such a simple situation in the theory 
of materials, there must undoubtedly be some analogies with Soltzmann's theory. Below, we 
state exactly the problem of the behaviour of composite materials in terms of distribution 
functions. A sequence of problems then arises which recalls, if we continue the association 
with the theory of gases , the chain of Bogolyubov-Born-Green-Kirkwood-Ivon equations. 

We shall start from a statement of the material behaviour problems in terms of the 
realization of random fields. 

A clear mathematical statement of such problems is obtained after expressing, as in /I/ 
for media with a periodic structure * the idea of the asymptotic nature of the averaging 
problem (see also /2, 3/ and the references cited there). The ratio of the scale of the in- 
homogeneity (the cell step in the periodic case) to the characteristic scale of the problem 
is a small parameter. The required functions are regarded as functions of fast and slow 
variables. The fast variables vary in a cell, while the slow variables Ynxnber" the cells. 
To a first approximation, to find the dependence on the fast variables, we have the so-called 
problem in a cell, while the dependence on the slow variables is found from the averaged 
equations. The coefficients of the averaged equations (and the form of these equations in 
the case of non-linear problems) are found from the solution of the cell problem. Thus 
solution of the averaging problem reduces to solution of the cell problem. 

The asymptotic approach has been extended to the case of almost periodic and random media 

/4, 5/. The analogue of the cell problem then proved to be the problem of the behaviour of 
a continuous medium in an infinite space for a typical realization of the random character- 
istics of the medium. Its statement proved to be a very important step in understanding the 
averaging problem and enabled the well-known heuristic relations to be establfshed'and some 
new general facts to be proved f4-lO/. We shall follow ~'7, 8/ when stating this problem. 

we consider a continuous medium defined by the Lagrangian h,whieb depends onthephysical 
characteristic a of the medium and on the derivatives ai of the required function u with 
respect to the space coordinates: A = A(u,u~). In the context of applications, thespace is 
assumed to be three-dimensional, and the subscript i covers the values 1, 2, 3; but the 
dimensionality is not important in what follows. If there are several required functions and 
*Prikl,Matem.~e~~.,51,6,916-925,1987 
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characteristics of the medium, then u and a denote the respective sets of quantities. The 
Lagrangian A can signify the internal energy of an elastic body (aisthemodulusofelasticity, 
and u are the components of the displacement vector), the dissipation in a heat-conducting 
body (a is the thermal conducti.vity,andu is the temperature) , or the dissipation in Stokes' 
flow of a viscous fluid (a is the coefficient of viscosity r and uare the velocity components) 
etc. 

We introduce the auxiliary space R of fast variables Y,, the set of which is denoted by 

Y. We assume that the system of coordinates Yt in R is Cartesian. Given any function v(Y) 
we define its mean over the space by 

?“/a 
1 

((P(Y))=~~~~ sss V(Y) @Y 
---h/B 

It is understood that the limits and integrals encountered throughout exist. 
Every sample of the continuous medium is given by a field of characteristics a(Y) (see 

/4, 5, 7/ for details). Given any function 9(Y) and numerical parameters rt,we can define a 

number <A (a (Y), ui + *ii (Y))>+ where the vertical bar in the subscripts denotes differentiation 
with respect to Yi:*bi = &$aYi. The Lagrangian is lower-bounded (it can be assumed without 
loss of generality that A> 0), so that the variational problem info < A (a (Y), pi + *I& 
is meaningful. It is non-txivial if we impose on 9 constraints , excluding the case when the 
911 are identically constant, or otherwise, e.g., for strictly convex non-negative functions 
A, A (a(y), 0) = O,the minimum is reached at the point vi +$I i = 0. In particular, it can be 
assumed that$(Y)is bounded at infinity._ The problem then arising is a cell problem for a 
random structure. Themacro-Lagrangian A depends on the macrovariables vi, which signify 
the derivatives of the macrofields u, and is given by /7, 11, 4, 5/ 

where the infimum is sought In the set of functions Ip(Y)bounded at infinity, The ui in 
(1.1) are regarded as parameters. If a (Y)is a periodic function, it can be shown /7/ that 
the minimum in (1.1) need only be sought among periodic functions 9(Y) and (1.1) becomes the 
expression obtained in /ll/ for periodic structures: the angle brackets are then understood 
as signifying the average over a cell. 

A simple example is the problem foraheat-conducting body at rest. 
V,a'ja+, 

Here, A (a, Ui) = 
(summation is carried out over repeated subscripts or superscripts), aii are the 

thermal conductivities, while, since the problem is,,linear,themacro-Lagrangian 3 isquadratic 
in the gradients of the mean temperature vi: A = “/,ii”ViVj, ii”are the effective thermal con- 
ductivities, which are found from the variational problem 

By choosing different samples of the random field a (y)we can in general obtain different 
values of the macro-Lagrangian x. For problem (1.2), the following important assertion was 
proved in /5/: if a(y) is a homogeneous ergodic random field, then the random fields $I*, 
realizing the minimum in (1.2) , are also homogeneous and ergodic, while x is independent of 
the choice of sample of the field a(y). We assume henceforth that this assertion holds for 
all the problems considered. 

Since Ip(y)is bounded at infinity, we have /7/ 

<*ii (Y)> = 0 (1.3) 

For homogeneous ergodfc fields it can happen that the variational problem fl.l), in which 
the condition that*(yfbe bounded at infinity is replaced by condition f1.3), has the same 
solution as the initial problem. Later, for clarity, we consider problem (1.1) under condition 
(l-3), which is easier to take into account , and it will become clear how to replace this by 
the condition that3,(y)be bounded. 

The aim of our subsequent constructions is to restate problem (1.1) in terms of dis- 
tribution functions. 

2. Some heuristic considerations. 
We introduce the density f(a, cpl) of the joint distribution of fields a(y) *'r(Y) 

(we shall retain a bar in the subscript when we wish to emphasize specially that $ is a 
potential vector field). Since the random fields a,$, are homogeneous, the function f is 
independent of u, and since they are ergodic, the minimized functional can be written as 
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where da and dv, are elements of integration in the spaces of variables a and Cpi. 
Condition (1.3) is rewritten in terms of distribution functions as 

The function {(a,$,) also satisfies the natural conditions 

~f~a~~~)~u~~f*(a), fb*f)>Q (2.3) 

where fo(af is the given one-point distribution function of the homogeneous field a(Y). 
Note that (2.1) is a linear functional , call it l(j),of the distribution function. 

Relations (2.21 and (2.3) form a system of linear constraints on f. It is obvious that the 
search for the minimum over the fields *(Y)is equivalent to minimizing I(j) with respect to 
the distribution functions of this field, and we can write 

,T (vi) = inf, I (j) (2.4) 

We shall seek the minimum in (2.4) with respect to all functions f which satisfy con- 
straints (2.2), (2.3). The problem can be solved explicitly. For simplicity, wa consider 
the case of an isotropic (8 = a&'j) heat-conducting medium. Introducing the Lagrange multi.- 
plier Li for condition (2.21, we arrive at the variational problem 

in& Sl'iaatui -t- 9:) (Qi -I- qi) - i.i$il [(a, $)dadue, (2.5) 

where the minimum is sought with respect to all functions f which satisfy conditions (2.3). 
The structure of problem (2.5) is as follows: it is required to find the minimum of the 

functional 

f A (a x) f (t, x) 02 a.T 

with respect to non-negative functions f with a given value for each t of the integral of f 
with respect to X; denote the integral by IO(t). It is clear how the minimizing function f' 
is constructed: for each t we have to find the point .r" (t) at which the function A (t..zf has 
its minimum value with respect to z, and concentrate j' (t, x) at this point: f’ (b 4 = f” it) fi 
(s - .Y- (t)) (6 (2) is the Dirac delta function). 

The solution of problem (2.51 thus reduces to minimizing the expression in the square 
brackets in (2.5) with respect to qt. The minimizing element qliyis given by the equation 
a (Vi + Qi') = Ai, so that f” (a, $i) = fo (a) 6 (+i - a-‘h< -t Vi). The Lagrange multiplier hi is found 
from condition (2.2)1 hi = (Mu-')-'v~ (M denotes the expectation value). Substituting f” into 
(2,4), we find the minimumvalueof the functional; Z/,(Md*)-*vi~i. We have thus arrived at 
Rice's expression, which gives a lower bound for the effective heat conduction, though ft is 
not exactly true for any macro-isotropic structure (except for the trivial case a(Y)= const). 
It can be assumed that this is true for two reasons: first, instead of using all the informa- 
tion about the field.a(Y);weonly used its one-point distribution function8 and second, we 
did not take into account that qi are the derivativesofa function +, which in general can 
lead to extra constraints on function j(e, 92). 

We first consider the statement of these extra constraints, which is of independent 
interest. 

3. Constraints on the distribution function. 
Let f,, = j (Yo), *(*It $i(l); . . .; y("),@'),$&*)) be the n-point distribution function of ‘random 

fields $,Q1. The family of distribution functions (a = 1, 2, . . .) satisfies the following 
matchingconditions:for all n 

the function j,is symmetric with respect to any pair of argumentsi f, > 0 (3.1) 

fn-l=jfnd$(R)dvly(q, Sf,dlpdu,,& (3.9 

The arguments f,in (3.1) are understood to be the quantities distinguished in the wxiting 
of f, by a point with a comma. We have the foliowing theorem. 

Theorem 1. In order for the family of distribution functions ofthefields $?. Qi to be a 
a family of distribution functions of the random field@(Y) and its derivatives *I1 (Y)* it is 
necessary that the f, satisfy the matching conditions (3.1) and (3.2), while for fi=f(y,$,qi; 
y’, 9’7 *if) we must have the equation 
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(3.3) 

Here, dvqe is a volume element in the space of variables $1'. It is assumed that all 
the integrals and derivatives in 13.3) exist. If, in addition, fa-+O as $4 CO,$-+ 30 so 
fast that the following integrals over the sphere 2, or radius r in the space of variables 
@(C&Q is a volume element of Z,) tend to zero as r* 13: 

then the conditions mentioned are also sufficient. 

Notes. lo. We write (3.3) under the assumption that fs is differentiable. Otherwise, 
(3.3) must be understood in the weak sense, i.e., as an integral identity. 

20 . If 9 is a vector, and not a scalar, field, then aialp in (3.3) must be understood as 
a divergence, e.g., the form (summation over a,S) 

Proof. Necessity. Let a(y,9;y’,$‘) be a finite function of its arguments, and 9(Y) a 
realization of a differentiable random field 9. We construct the function '$(Y,Y') of two 
;fgsen;z: @ (Y,,Y')s; a(~t@(Y); y',$(y')). Since a is finite in y, y', then 8 (y, y') is also 

Y> Y I 

s a*Ff (Y, Y’) 
ayi ay’j dBy dsy’ z 0 

Writing this equation in terms of function a, we have 

(3.4) 

Taking the expectation value of the left-hand side, we have 

Since a(~,$; Y'.$') is arbitrary, (3.3) follows from (3.5). The necessity of matching 
conditions f3.1), (3.2) is well-known, see e.g., 112,'. 

Sufficiency. Assume that we have a family of distribution functions that satisfy the 
matching conditions 13.1) and (3.2). Then, by Kolmogorov's theorem /12/, there are random 
fields q(Y, ~),I@~(Y, o) fo is an element of probability space) whose distribution functions 
belong to this family. We show that, with probability one, by virtue of Sq.13.31, the 
functions 
to show thazitY‘ ") 

are the derivatives with respect to y'of cp (Y, 4. For this, it suffices 

(3.6) 

where r is a contour joining the points y and y'. Removing the brackets in (3.6) and taking 
the expectation value, we obtain 

B (Y? y) + B (y’, y’) - 2B (y, g’) + f 1 B*, (2.X’) dzidz’j - 
fl- 

(3.7) 



We now multiply (3.3) by $$‘ and integrate the result with respect to @#I, and then 
integrate over the contour I? with respect to $ and y". It can be shown that Eq. (3.71 is 
then obtained (we need the condition for the integrals over C,to tend to zero, in order for 
the terms that appear in the integration by parts to vanish). Thus, (3.6) follows from (3.3), 
and for (almost) every sample 

*Q/y? o)--- *(y',(0) - S*i(z,O)iki= 0 
r 

Consequently, (It@, o) are the derivatives with respect to y'of the function cp (Y* 0)s 
which it was required to prove. 

Theorem 2. If I&~ is the gradient of the field $, we have for the one-point distribution 

function f(Y, *, *i) 

Eq,(3.8) holds in the same way as (3.3). 
We now consider the homogeneous random fields for which fl is independent of y, while jz 

depends on the coordinates only via the difference z = y' ---p* We assume that f, -0 so fast 
as rc)-+co,lp' --P 30, that, when integrating by parts expressions of the type Cpaf,/&#, the term 
outside the integral vanishes. 

Corollaries, lo. For homogeneous random fields 

a 
-iq s f (v* *ia) 9ia “* = ’ 

The superscript &which numbers the set of functions!j%is restored in (3.9) if there are 
several of them, in order to emphasize thatEq.(3.9) signifiesthe"incompressibility" for every 
i of the mean field of gradients in the space of variables 9%. 

20. The mean value of the field gradient is zero: 

We obtain (3.10) from (3.9) by multiplying by 9" and integrating by parts. 
30 . For homogeneous fields fa we have the equation 

40 . We have the equation 

(3.10) 

13.11) 

(3.12) 

It is obtained from (3.11) by multiplying by Ipl 9' and integrating with respect to %,tp'. 

Theorem 3. The necessary and sufficient conditions for the random homogeneous field 

*i (Y+ @) to be a field of derivatives of a random function $(y, w) are that the family 
of distribution functions satisfies matching and homogeneity conditions and that there is a 
function B(t)such that (3.12) holds. 

The proof is similar to thatof Theorem 1 , the only difference being that, instead of 
(3.6), we establish the equation (l? is any closed contour) 

4. The averaging problem in terms of distribution functions. In sect.3 we 
obtained all the relations needed for restating the problem in a cell. Let fn (y(‘), CZ (If, *i(l) ; 
. . .;y (n), 0, lppq (n = 1, 2, . . .) be the family of n-point distribution functions of random 
fields a(y), +i(y),which satisfy the matching conditions. The field a(~ given, so that 
the functions f. in the equation 



are known. 

s f (y(l), a(l) $1) , 1 ; . . . ; y(n), a@), tp) d”@) . . . dU*(“f = 

f. (yq u(l); . . . ; y”“‘, aq 
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,{4.1) 

We consider the problem of minimizing the functional I(f) in the set of families of 
distribution functions which is distinguished by the constraints (2.2), (3.12), and (4.1), 
and we assume that the lower bound of r(f)& reached in this set. 

Theorem 4. Eq.(2.4) holds, in which inf is sought over all the distribution functions 
that satisfy the matching conditions and conditions (2.2), (3.12), and (4.1). 

Proof. Let 9" (y)*be the minimizing element of the cell problem. Let .P denote the family 
of distribution functions of the fields a(y), @z' (~)i~~i. This family satisfies the matching 
conditions and (2.2), 13.12), (4.11, so that 

inft I (f) < Z (i*) = A (Vi) (4.2) 

Now Let f"betheminimizingfamilyofdistribution functions in our problem. Since it 
satisfies the matching conditions, there exist by Kolmogorov's theorem random fields qi(y,o) 
for which these functions are distribution functions. Since Eq.(3.12) holds, there is a 
random field @((y, w) for which qt = &(y,o)/8y'. Moreover, MA (a, vi -tri)J = <A (a. vi $_+#A> c 
CC. On taking Q(y, o) as the test function of the cell problem, we obtain 

xfui) < <A(a, Vi i +i)>= Mfy(a,~i + $j)= i:,f j(f) (4.3) 

From inequalities (4.2) and (4.3) we obtain the theorem. 

Notes. 3O. Our variational problem is a problem of minimizing a functional 1 if) which 
is linear in f, in a set of functions which satisfy linear constraints, i.e., in this case 
it is a linear programming problem. Note that our theorem reduces both linear and non-linear 
(with non-quadratic Lagrangians) problems to a linear programming problem. 

40 . Without dwelling on the fact in detail, note that the cell problem for a periodic 
structure also reduces to a linear programming problem, Here, by the probability of the 
values of field 9: lying in a domain A of the space of variables \pi. we have to understand 
the volume part of the cell in which lpr takes values from A. Relation (2.1) then refers to 
finding the Lebesgue integral over the cell. The interpretation of n-point distribution 
functions is similar. 

5. The sequence of approximations. 
The above statement of the avaraging problem contains an infinite number of constraints. 

II-I this connection a sequence of approximation problems arises, in each of which there is 
only a finite number of constraints. In the problem of the first appproximation, only one- 
point distribution functions participate, in the second, only two-point functions, etc. In 
each successive problem, more and more detailed characteristics of the random field a&, w) 
are taken into account. 

Let 1~") be the lower bound of the functional I(f the set distinguished by the con- 
straints of all the k-point distribution functions with 1~ <n. 

Consider the possibility of the equation 

Iim I, = 7i (Vi) 
n-m - (5.1) 

As n increases, the set of admissible functions contracts, so that I_,,,t<ftn+n. By f4.2), 

the sequence 4,) is upper bounded by XiQi)* It therefore has a limit. Assume that it is less 
than AT(vi). Let G0 be the minimizing element of the n-th approximation problem. If there 
is a field 9 (")(Y) and a field a@')(u) such that I&, is the joint distribution of a(") 

Ogl (~1, then 1~~~ = <A (@ 01, VJ + I@$') (g))). As II - aj, the fields @) (#J and (1 (3) approximate 

in their distributions, and for sufficiently large n we have &= <Atru(g); ui+$'))) -t O(IZ). 

On taking @') as the test field in the cell problem, we obtain the bound x (ci)<i,+,-C 00~1~ 
which leads to a contradiction with our assumption. 

If we introduce into the space of one-point distribution functions the "energy norm" 
(2.1) (recall that f>0, h,>Q,.then Fq.(5.1) can be interpreted as convergence in the 
energy norm of one-point distribution functions of the approximate problems to the one-point 
function of the initial problem. The question oftheconvergence of many-point distribution 
functions remains open. 

The first three approximations are of greatest interest; higher order approximations 
are scarcely necessary. 



6. The dual problem. The approximation error can be efficiently monitored by using 
the dual problem. In terms of realizations, it can be stated as 

X (Oi) -= suPl,z ((Pi> Vi - (.4* (0 ({J), pi(y)))) @.i) 

where the sup is sought over all constraints at infinity on the vector fields pi {y) which 
satisfy the constraint 

P',i (Y) = 0 (8.2) 

and A*@, p') is the Young-Fenchel transformation of il (a. &) with respect to the variables 
ui: 

A*(a,p')=sup,,(piui - il(a, Ui)) 

The general solution of Eq.(6.2) can be written as 

pi = eij'cQjw 

where etjk are Levi Civita symbols. The dual can therefore be written in the same form as the 

initial problem, with the integrand L (U, (Qi, vi) = eijkqiik Vi - A* (a (y), eijk fpjlR). The statement 
of the dual problem in terms of distribution functions is the same as for the initial problem, 
with il replaced by& 

Let Ten, 
inf by sup, and *by vi+ 

denote the upper bound of the functional 

J=- SL (a,cp,,vi)~(a,cpi)da dv, 

in the set distinguished by the constraints on the k-point distribution functions, k = 1, . . . . 
n. In the same way as in Sect.5, we can shown that 

lim Z,,,=.X(uij 
n-M) 

I - 
The sequence Jo,, is decreasing: <,,+n < &, and moreover A(,) < A (Vi) < 7~~). These 

inequalities can provide two-sided bounds onthemacro-Lagrangian. 

7. Approximations and extremality with respect to microstructures. 
We specify an n-point distribution function of the field a(y) denote by &the set of 

fields a($)wh have this distribution function. Since the macro-Lkegrangian X(_vi) depends 
on the choice of field a(y),we note this by assigning to it the subscript a: x = R,(ui). We 
state without proof the following property of n-th approximation problems, which explains 
their significance: 

1t can be shown that all the well-known results of averaging theory, which contain one- 
point distribution functions (Dykhne's formula, the Lur'e-Cherkayevestimates,etc.l, can be 
extracted from the first approximation problem. The second approximation cannot be studied 
analytically; it seems only to be open to numerical methods. 

1. 

2. 

3. 

4. 

5. 
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7. 
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ON THE STRUCTURE OF QUASITRANSVERSE ELASTIC SHOCK WAVES* 

A.G. KULIKOVSKII and E-1. SVESBNIKOVA 

The structure of quasitransverse shock waves in a slightly anisotropic 
medium in the presence of dissipation due to viscosity is investigated. 
The existence of a shock structure "responsible" for ambiguity of the 
solution of a selfsimilar problem about waves excited in a half-space is 
demonstrated. The question of the existence of a structure for the 
remaining quasitransverse shock waves is discussed. 

It is shown in the analysis of gas dynamics /lf and certain other /Z-5/ problems that 
selection of the discontinuities that should be utilized to construct solutions should not be 
constrained, in many cases, by just conditions for a non-decrease in entropy and by evolution- 
arity conditions. Confirmation of the requirement often utilized for the existence of the 
structure of a discontinuity /l, 3, 4, 5/ is especially important and interesting in cases 
when ambiguity of the solution of problems occurs, as in /l-4/ since it assists in selecting 
the unique solution that can actually be realized. 

Ambiguity of the solution for certain ranges of the problem parameters was detected /6, 
7/ when constructing solutions of selfsimilar problems in a prestressed or generally weakly 
anisotropic elastic medium for given initial strains and strains different from the initial 
on the half-space boundary. Quasitransverse shock waves that satisfy the condition of a non- 
decrease in entropy and the evolutionarity conditions were utilized in constructing the 
solutions. It can be suspected that , as in /l-4/, the ambiguity of the solution of self- 
similar problems is a result of the fact that not all the shock waves mentioned possess a 
structure, i.e., a continuous solution of a certain more-complete system of equations taking 
account of the dissipative processes proceeding in a narrow zone corresponding to the dis- 
continuity in the solution of the original equations. 

We will make a general remark here concerning the further content of the research where 
(as in /l-4/) only a stationary shock wave structure is examined. In cases when there is no 
stationary structure and the appropriate discontinuity necessarily occurs in the solution of 
the problem, a non-stationary structure is apparently realized. A well-known example of this 
kind is the hydraulic jump whose structure is turbulent. In those cases, when there are several 
solutions of the problems, preference should obviously be given to solutions containing dis- 
continuities possessing a stationary structure (as is done in /l-5/1. From this viewpoint, 
shocks encountered in the solution only in the case of ambiguity , when tere is a competing 
solution not containing a shock of this kind, are of greatest interest for investigating the 
stationary structure. 

The structure of quasitransverse shocks for which the necessary conditions for existence 
(evolutionarity and non-decrease of the entropy) are satisfied /9, 9/, is investigated below. 
Terms taking account of the additional stresses caused by viscosity are added as a dissipative 
mechanism to the dynamical elasticity theory equations. This is the simplest of the dis- 
sipative mechanisms used in the theory of a solid deformable body and ensures continuity of 
the solutions. It can be hoped that if ambiguity of the solution of the selfsimilar problem 
is associated with the absence of a structure for part of the discontinuities, then this should 
already have been detected in this model. 

1. we consider the motion in the form of plane waves parallel to a certain plane which 
we select as the coordinate plane zga of a Lagrange coordinate system zl,zz,sS = x. The qua%'i- 
tities zl,s2,z correspond to rectangular Cartesian coordinates in the non-deformed state of 
the medium. Initial deformation of the medium, if it exists, is considered homogeneous: 
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